From Broadcast to Dialogue: A Design Framework for Conversational AI and Curatorial Insights in Cultural Heritage

Matthew Kenely¹, Matthew Mangion¹, Mark Bugeja², Dylan Seychell¹, and Jean Gové³

¹ SeyTravel Ltd, Malta {dylan.seychell, matthew.kenely, matthew.mangion}@seytravel.com
² University of Malta
mark.bugeja@um.edu.mt
³ Archdiocese of Malta
jean.gove@maltadiocese.org

Abstract. While immersive projection experiences powerfully engage heritage site audiences, they remain one-way broadcasts lacking interactivity and personalisation. This paper presents a design framework for augmenting these installations with conversational AI, transforming passive viewing into active dialogue. Drawing from the 'Face-to-Face with Caravaggio' experience at St. John's Co-Cathedral, Malta, we propose a framework enabling visitors to engage with embodied historical personas while providing curators with data-driven insights through anonymised interaction analysis. Our design science approach addresses core principles of authenticity maintenance, ethical deployment, and scalable integration, offering heritage institutions a replicable model. Mixed-methods evaluation reveals 65.6% visitor interest in AI companions, with primary concerns around overshadowing artwork. Expert interviews emphasise audience segmentation, historical authenticity, and complementary roles for AI in heritage interpretation. This evolves static exhibitions into dynamic, visitor-driven dialogues enhancing both engagement and operational intelligence.

Keywords: artificial intelligence, conversational AI, heritage tourism, design framework, visitor experience

1 Introduction

Immersive projection experiences powerfully engage contemporary audiences in heritage sites worldwide through high-resolution imaging, spatial audio, and crafted narratives. However, despite their visual sophistication and emotional impact, they face a fundamental limitation: functioning as broadcast media delivering predetermined content unidirectionally, constraining opportunities for inquiry, personalisation, or exploration of individual interests.

Conversational artificial intelligence presents a natural evolution, transforming this broadcast model into an interactive dialogue framework (Figure 1).

2 Kenely et al.

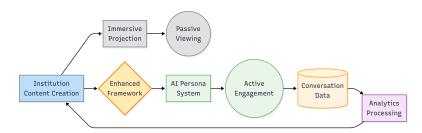


Fig. 1. Evolution from broadcast to dialogue model, showing how the enhanced framework branches traditional one-way projection experiences into interactive visitor engagement with AI personas and institutional feedback loops. Source: Author's own.

Recent advances in large language models enable historically accurate dialogue systems that embody historical figures, respond to visitor questions, and adapt explanations to different knowledge levels. Integration offers compelling advantages: visitors pursue spontaneous questions through personalised dialogue, while institutions gain unprecedented insights into audience engagement patterns.

This paper introduces a comprehensive design framework for augmenting immersive projection experiences with conversational AI. Drawing from the 'Face-to-Face with Caravaggio' installation at St. John's Co-Cathedral, Malta, we present a methodology addressing technical, ethical, and operational considerations. Our framework serves dual purposes: enhancing visitor experience through personalised dialogue and providing management intelligence through systematic feedback analysis. We establish design principles ensuring ethical deployment and scalable application across diverse heritage contexts, demonstrating feasibility through mixed-methods evaluation combining visitor surveys and expert interviews.

2 Theoretical Background & Related Work

2.1 Experience Co-Creation and Digital Storytelling

Experience co-creation theory suggests meaningful engagement emerges when visitors actively construct understanding rather than passively receiving predetermined narratives [1,3]. While digital storytelling in heritage contexts has traditionally focused on multimedia narrative delivery, recent research emphasises interactive elements allowing visitors to shape their experience journey [4, 18]. Conversational AI represents a significant advancement enabling dynamic content adaptation based on real-time visitor input, aligning with contemporary museum theory's emphasis on visitor agency and personalised learning pathways.

Conversational AI applications in tourism have evolved from simple chatbots to sophisticated systems capable of complex cultural dialogue [9–12, 14]. Key developments include successful deployment of embodied historical figures

where visitors engage with AI representations combining historical knowledge with personality-driven responses [8,13]. The tourism sector demonstrates growing acceptance of AI-mediated experiences, particularly among digitally native visitors [2], though successful implementation requires careful attention to cultural sensitivity, historical precision, and preservation of authentic human connections.

Cultural heritage institutions increasingly recognise visitor data's value for improving exhibitions [5–7]. Traditional visitor studies provide limited insight into real-time engagement patterns. Conversational AI systems generate rich interaction data revealing visitor interests, misconceptions, and successful explanation strategies across distinct knowledge categories. When properly anonymised and systematically analysed, this data provides curators with actionable insights for targeted content development, representing a significant advancement in evidence-based exhibition design.

3 Methodology: A Design Science Approach

Our research methodology builds upon the 'Face to Face with Caravaggio' immersive experience at St. John's Co-Cathedral, Valletta. This installation creates an intimate encounter with Caravaggio's masterpiece 'The Beheading of St. John the Baptist' through high-resolution projection mapping, spatial audio, and choreographed visitor movement.

Fig. 2. Photographs of the 'Face to Face with Caravaggio' experience at St. John's Co-Cathedral, Valletta, showcasing its immersive projections and interactive displays. Source: Author's own.

The experience demonstrates immersive projection technology's power for cultural engagement, with 77% of visitors reporting enhanced appreciation of sacred and historical art. However, evaluation revealed three primary limitations: predetermined narrative structure limiting personalisation; absence of dialogue mechanisms preventing spontaneous inquiry; and lack of feedback collection systems limiting curatorial insight into visitor engagement patterns.

4 Kenely et al.

To address these limitations, we developed a conversational AI prototype embodying Caravaggio using Google's Gemini-2.5-Flash-Lite model. This approach presents unique challenges, as one expert observed: "we don't have his voice... what we have of him is other people's experiences and his paintings... we are just collecting clues about who was Michelangelo Merisi from Caravaggio." Character development leveraged documented historical accounts, personality traits inferred from his paintings, consultation with cultural heritage professionals, and analysis of existing AI systems in heritage contexts.

The system prompt creates an authentic first-person voice through temporal boundaries restricting responses to Caravaggio's era, personality traits reflecting documented characteristics, and fallback mechanisms for historically uncertain topics. Testing revealed that content management ease and interface design were critical factors for successful heritage deployment.

Building upon prototype insights, we propose a comprehensive framework integrating immersive projection with conversational AI through two interconnected components. The visitor experience layer creates seamless integration between passive viewing and active dialogue: visitors first experience the immersive projection, then access conversational interaction through personal devices via QR codes. The management insight layer captures and analyses anonymised conversation data, providing curators with intelligence through systematic categorisation of visitor inquiries across distinct knowledge domains, enabling targeted enhancement of character responses while maintaining authenticity.

4 Illustrative Scenarios

4.1 Scenario A: The Inquisitive Visitor

Consider a visitor engaged by the projected detail of the executioner's blade in Caravaggio's "The Beheading of Saint John the Baptist" (Figure 3). They notice the artist's signature written in the martyr's blood—the only painting Caravaggio ever signed. Following the projection, they access the Caravaggio persona through a QR code.

"I was struck by seeing your signature in the saint's blood," the visitor types. "Why did you choose to sign only this painting?" The AI responds in character: "Blood speaks. It is life, it is death, it is the very essence of the Baptist's sacrifice. If I did indeed sign my name in such a way, it was not out of vanity, but to bind myself to the act, to the saint, to the brutal reality of the scene." This personalised explanation provides depth impossible in generalised narratives. The conversation evolves as the visitor explores dramatic lighting techniques, Caravaggio's exile to Malta, or martyrdom symbolism, with each response maintaining historical accuracy while adapting to the visitor's knowledge level.

The visitor interacts through a streamlined mobile interface (Figure 4) maintaining conversation history while enabling natural dialogue flow.

Fig. 3. The Beheading of Saint John the Baptist at St. John's Co-Cathedral, Valletta, Malta. Source: St John's Co-Cathedral, via Wikimedia Commons (Public Domain).

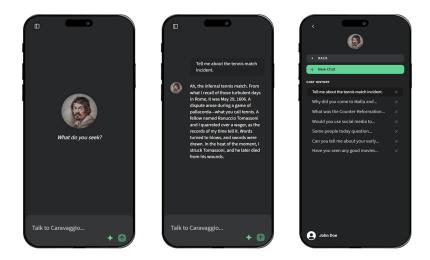
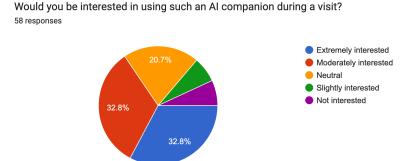


Fig. 4. Mobile interface mockup showing conversation flow and history with the Caravaggio persona. Source: Author's own.

4.2 Scenario B: The Curator's Weekly Review


Each Monday, the curator reviews visitor engagement data through the insight dashboard. Analysis shows 35% of conversations focused on the Knights of Malta, 28% explored artistic techniques, and 22% examined Counter-Reformation context. The data reveals frequent questions about the painting's cathedral location and Knights' history—topics only briefly addressed in the current projection—while noting that technical artistic discussions generate high engagement scores, informing future exhibition planning.

5 Evaluation and Results

We employed a mixed-methods approach with structured questionnaires administered to 58 visitors at St John's Co-Cathedral (32% aged 26-35) and expert interviews with two senior cultural heritage professionals given access to a functional Caravaggio prototype.

5.1 User Engagement Metrics

Survey results validated conversational AI integration, with 77% visitor enrichment from the existing multimedia exhibition and strong acceptance of AI companions.

Fig. 5. Visitor interest in AI companions showing 65.6% positive reception. Source: Author's own.

Results showed 65.6% expressing positive interest (32.8% extremely interested, 32.8% moderately interested), with only 20.7% neutral (Figure 5).

Participants most valued sharing historical and cultural background (60.3%) and explaining artistic symbolism (51.7%), with interactive questioning garnering 34.5% support (Figure 6). Personalisation features received lower priority, suggesting preference for authentic historical interpretation.

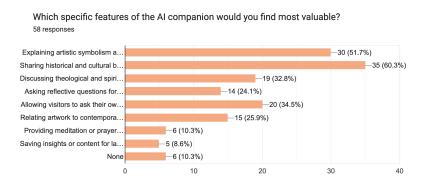


Fig. 6. Most valued AI companion features prioritising historical context and artistic interpretation. Source: Author's own.

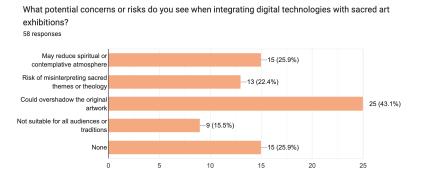


Fig. 7. Visitor concerns revealing primary worry about technology overshadowing artwork. Source: Author's own.

8 Kenely et al.

The primary concern was technology overshadowing original artwork (43.1%), with secondary concerns including reduction of spiritual atmosphere (25.9%) and misinterpreting sacred themes (22.4%) (Figure 7). Importantly, 25.9% indicated no concerns.

5.2 Expert Interview Insights

The cultural heritage interpretation expert found the persona accurately reflected documented personality and historical context, but noted challenges in response structure and audience adaptation. Formal paragraph structures could deter general tourists while engaging specialists, validating adaptive personalisation [21]. Concerns emerged regarding historical knowledge limitations, with recommendations for clear disclaimers.

The digital media expert characterised the system as "a leap forward," high-lighting personal device integration and natural language capabilities, advocating for simplified access mechanisms (QR codes) while warning against complex registration requirements.

Both experts converged on critical considerations: historical authenticity as paramount, complementary rather than replacement roles for AI, adaptive systems accommodating different visitor knowledge levels, and simple deployment mechanisms. These assessments validate our framework design principles while informing future development priorities [6, 17].

6 Discussion

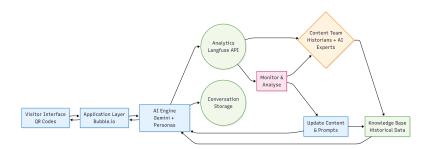
Traditional definitions of immersion in heritage contexts focus on sensory engagement through visual and auditory elements. Our framework expands this to encompass intellectual and emotional immersion through personalised dialogue, where true immersion emerges when visitors actively participate in constructing meaning.

Conversational AI integration creates multi-layered immersion operating across temporal and cognitive scales. The initial projection provides immediate emotional impact and contextual foundation, while subsequent dialogue enables deeper exploration and personalised meaning-making, addressing diverse learning styles: visual learners benefit from projection spectacle, verbal processors engage through dialogue, and analytical visitors explore details through sustained conversation.

Expert interviews reveal that effective AI heritage systems must address diverse visitor needs through adaptive interface design. As the digital media expert noted, "after a couple of minutes you get tired of typing on a smartphone," highlighting voice interaction as universally beneficial. Table 1 identifies three primary visitor archetypes requiring differentiated interaction approaches.

This segmentation addresses expert concerns about response adaptation, with the cultural heritage expert emphasising that "general [tourists] would be

Visitor Persona	Interaction Style	Content Adaptation
Expert Users (Historians, Researchers)	Text-based with multi-modal database access	Academic-depth responses with scholarly references and ongoing debates
General/First-time Visitors	Voice-enabled with guided prompts and visual cues	Accessible explanations with progressive complexity options
Time-constrained Visitors	Voice-first, hands-free operation	Concise audio responses with optional visual supplements


Table 1. Visitor Persona-to-Interface Mapping for Heritage AI Systems

put off" by complex responses, while specialists require depth. The framework's voice-first design addresses mobile interaction fatigue in museum environments.

Our framework positions human curators at the centre of experience design and content validation, with AI enhancing rather than replacing curatorial knowledge. This human-in-the-loop model ensures technological capabilities serve cultural goals [17], with curators maintaining control over content accuracy, cultural sensitivity, and messaging while leveraging AI for personalised and scalable engagement [19].

The framework's modular design enables adaptation across diverse heritage contexts, with applications extending to heritage tourism routes, educational partnerships, and virtual access programs [15,16,20].

7 Implementation Considerations

Fig. 8. Technical architecture and data flow for AI-powered historical character interactions, demonstrating integration between visitor interface, conversational AI processing, and continuous improvement cycles driven by expert content development and analytics feedback. Source: Author's own.

Successful implementation requires robust technical infrastructure seamlessly integrating projection systems with conversational AI platforms, supporting real-time response generation, secure data handling, and reliable performance under varying visitor loads.

The system architecture (Figure 8) centres on three core components: the application layer utilising Bubble.io for automatic scaling, the conversational AI layer employing Google's Gemini-2.5-Flash model for natural language processing, and the analytics layer integrating Langfuse API for conversation monitoring. Key technical components include cloud-based language model hosting, secure visitor device integration through QR codes, and dual data collection systems simultaneously sending messages to the application's CMS and Langfuse API for analytics while maintaining privacy compliance through anonymised data collection.

Character development requires collaboration between AI specialists, historians, and cultural experts to ensure authentic persona creation through historical source research, personality analysis, and iterative testing. Content validation protocols address historical accuracy, cultural sensitivity, and appropriateness for diverse demographics, enhanced by systematic analysis of conversation patterns and feedback.

The system implements a continuous improvement cycle through five phases: monitoring live conversations and feedback, analysing low-scoring interactions filtered by feedback categories, building datasets from problematic interactions with expert-curated responses, experimenting through controlled prompt testing, and deploying validated improvements. Visitor inquiries are categorised into distinct knowledge domains (historical events, biographical details, cultural practices, architectural features, contextual interpretations), enabling targeted enhancement of character knowledge.

System architecture anticipates future developments through modular design enabling component updates without complete replacement, while ongoing content management supports automated updates and expert review to maintain historical authenticity and engaging presentation.

8 Conclusion

This research demonstrates that immersive projection experiences, while powerful in their current form, represent only the beginning of truly engaging heritage interpretation. Through systematic integration with conversational AI, these broadcast models can evolve into dynamic dialogues providing both enhanced visitor experience and valuable institutional intelligence.

Our design framework, grounded in practical implementation experience, offers heritage institutions a replicable approach to augmenting existing installations while planning new ones. The architecture serves visitor engagement and institutional learning simultaneously, creating sustainable value through systematic improvement cycles while maintaining rigorous standards for historical accuracy and cultural sensitivity. The framework's emphasis on human oversight, cultural sensitivity, and ethical data handling addresses legitimate concerns about AI deployment in cultural contexts while demonstrating the technology's potential to enhance rather than replace traditional expertise and institutional authority. Successful implementation requires careful coordination between traditional interpretation methods and new technological capabilities, positioning conversational AI as complementary to human guidance.

Future research should focus on longitudinal studies of visitor engagement patterns, cross-cultural validation of framework principles, and exploration of emerging AI capabilities that could further enhance heritage interpretation. The rapid pace of technological development ensures continued opportunities for innovation while maintaining the fundamental goal of meaningful human connection with cultural heritage.

By moving from broadcast to dialogue, heritage institutions can create experiences that honour cultural authenticity while meeting contemporary expectations for personalised, interactive engagement with the past.

References

- Bugeja, M., Grech, E.M.: Using technology and gamification as a means of enhancing users' experience at cultural heritage sites. In: Rediscovering Heritage Through Technology: A Collection of Innovative Research Case Studies That Are Reworking The Way We Experience Heritage, pp. 69–89. Springer (2020)
- Bugeja, M., Dingli, A., Seychell, D.: Selfie as a Motivational Tool for City Exploration. In: Proceedings of the 14th International Conference on Mobile Learning. International Association for Development of the Information Society (IADIS) (2018)
- 3. Neuhofer, B., Buhalis, D., Ladkin, A.: Technology as a catalyst of change: Enablers and barriers of the tourist experience and their consequences. In: Information and Communication Technologies in Tourism 2014, pp. 789–802. Springer (2014). https://www.tandfonline.com/doi/full/10.1080/16078055.2019.1639920
- 4. Chen, C.-Y., Chang, C.-C., Tseng, Y.-C.: Evaluating visitor experience of digital interpretation and presentation technologies at cultural heritage sites: a case study of the old town, Zuoying. Built Heritage 4(1), 1–15 (2020). https://link.springer.com/article/10.1186/s43238-020-00016-4
- 5. Zhao, M., Wu, X., Liao, H.-T., Liu, Y.: Exploring research fronts and topics of Big Data and Artificial Intelligence application for cultural heritage and museum research. IOP Conference Series: Materials Science and Engineering, vol. 949, p. 012036. IOP Publishing (2020)
- Liang, Y., Lee, S.H.M., Radosevich, A.J., Smith, M.L.: An analysis of research trends for using artificial intelligence in cultural heritage. Electronics 13(18), 3738 (2024). https://www.mdpi.com/2079-9292/13/18/3738
- Derda, I., Predescu, D.: Towards human-centric AI in museums: practitioners' perspectives and technology acceptance of visitor-centered AI for value (co-)creation. Museum Management and Curatorship 0(0), 1–23 (2025)
- 8. Pataranutaporn, P., Danry, V., Leong, J., Punpongsanon, P., Novy, D., Maes, P., Sra, M.: AI-generated characters for supporting personalized learning and well-being. Nature Machine Intelligence 3(12), 1013–1022 (2021)

- Montusiewicz, J., Baran, R., Szymkowski, M.: Crafting a museum guide using GPT-4. Preprints.org (2023). https://www.preprints.org/manuscript/202306. 1618/v1
- Pescarin, S., Pagano, A., Fanini, B.: Large language models as recommendation systems in museums. Electronics 12(18), 3829 (2023). https://www.mdpi.com/ 2079-9292/12/18/3829
- 11. Trichopoulos, G.: Large Language Models for Cultural Heritage. In: Proceedings of the 2nd International Conference of the ACM Greek SIGCHI Chapter, pp. 1–5. ACM, New York (2023)
- 12. Cuseum: Enhancing cultural spaces with generative AI (2023). https://cuseum.com/blog/ai-museum-engagement
- 13. Villaespesa, E., Wowkowych, S.: IRIS+ Part One: Designing + Coding a Museum AI. American Alliance of Museums (2018). https://www.aam-us.org/2018/06/12/iris-part-one-designing-coding-a-museum-ai/
- Vassos, S., Malliaraki, E., du Bois, J.L., Wanderley, M.M., Mackay, W., Denef, S., Brukamp, K., Wiethoff, A., Fjeld, M.: Art-Bots: Toward Chat-Based Conversational Experiences in Museums. In: Proceedings of the International Workshop on Social Learning and Collaborative Technologies, p. 437 (2016)
- 15. Tzouganatou, A.: Can Heritage Bots Thrive? Toward Future Engagement in Cultural Heritage. Advances in Archaeological Practice 6(4), 377–383 (2018)
- Capece, N., Erra, U., Romano, S.: Personalized generative AI in VR for enhanced engagement: Eye-tracking insights into cultural heritage learning through Neapolitan pizza making. arXiv preprint arXiv:2411.18438 (2024). https://arxiv.org/html/ 2411.18438v1
- 17. Tiribelli, S., Pansoni, S., Frontoni, E., Giovanola, B.: Ethics of Artificial Intelligence for Cultural Heritage: Opportunities and Challenges. IEEE Transactions on Technology and Society 5(3), 293–305 (2024)
- Bekele, M.K., Champion, E.: A Comparison of Immersive Realities and Interaction Methods: Cultural Learning in Virtual Heritage. Frontiers in Robotics and AI 6, 91 (2019)
- Gillath, O., Ai, T., Branicky, M.S., Keshmiri, S., Davison, R.B., Spaulding, R.: When human-AI interactions become parasocial: Agency and anthropomorphism in affective design. In: Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency, pp. 1779–1790. ACM (2024). https://dl.acm.org/ doi/10.1145/3630106.3658956
- 20. Fu, Y., Shi, K., Xi, L.: Artificial intelligence and machine learning in the preservation and innovation of intangible cultural heritage: ethical considerations and design frameworks. Digital Scholarship in the Humanities 40(2), 487–508 (2025)
- 21. Farrugia, G.: The Presentation and Interpretation of Early Christian Heritage in Malta: Past, Present and Future. PhD thesis, University of Leicester (2017)
- 22. Graham-Dixon, A.: Caravaggio: A Life Sacred and Profane. W. W. Norton & Company, New York (2010)
- 23. Bellori, G.P.: The Lives of the Modern Painters, Sculptors and Architects [Le Vite de' pittori, scultori et architetti moderni]. Rome (1672). Translated by A. Sedgwick Wohl, H. Wohl, T. Montanari. Cambridge University Press (2005)
- 24. Natural Pigments: Explore Caravaggio's Baroque Color Palette: A Journey into Masterful Color Techniques (2025). https://www.naturalpigments.com/artist-materials/caravaggio-baroque-color-palette
- 25. System Prompts and Models of AI Tools. GitHub Repository (2024). https://github.com/x1xhlol/system-prompts-and-models-of-ai-tools