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Abstract—News outlets’ competition for attention in news
interfaces has highlighted the need for demographically-aware
saliency prediction models. Despite recent advancements in
saliency detection applied to user interfaces (UI), existing datasets
are limited in size and demographic representation. We present
a deep learning framework that enhances the SaRa (Saliency
Ranking) model with DeepGaze IIE, improving Salient Object
Ranking (SOR) performance by 10.7%. Our framework op-
timizes three key components: saliency map generation, grid
segment scoring, and map normalization. Through a two-fold
experiment using eye-tracking (30 participants) and mouse-
tracking (375 participants aged 13–70), we analyze attention
patterns across demographic groups. Statistical analysis reveals
significant age-based variations (p < 0.05, ϵ2 = 0.042), with older
users (36–70) engaging more with textual content and younger
users (13–35) interacting more with images. Mouse-tracking data
closely approximates eye-tracking behavior (sAUC = 0.86) and
identifies UI elements that immediately stand out, validating
its use in large-scale studies. We conclude that saliency studies
should prioritize gathering data from a larger, demographically
representative sample and report exact demographic distribu-
tions.

Index Terms—Computer vision, saliency prediction, eye-
tracking, visual attention, AI news analysis, user interface design
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I. INTRODUCTION

The growing demand for a human visual system model to

predict gaze behavior and ensure accountable, user-friendly

user interfaces (UI) in news websites has highlighted the

potential of saliency, a subfield of computer vision [1], [2].

Although saliency prediction has been applied to user in-

terfaces [3]–[5], existing datasets are smaller than those used

to train state-of-the-art models for traditional photographs [6]–

[8]. Moreover, prior studies often feature narrow demographics

[6], [9], [10], small sample sizes [6], [9]–[11], or fail to report

participant demographics in detail [4], [6], [10]–[12]. Through

this study, we highlight the importance of precise demographic

reporting in data-driven saliency research.

This study makes three primary contributions:

1) The optimization of an existing saliency ranking frame-

work (SaRa), which can generate the ranks of elements

in an interface by using any saliency model as a back-

bone and passing element masks as input.

2) The curation of a demographically diverse dataset in a

typical UI A/B-testing evaluation context, which cap-

tures attention shifts in news websites. Gaze data was

gathered through an eye-tracking experiment (n=30)

and a mouse-tracking experiment (n=375). The exact

demographic distribution of the participants is reported.

3) Statistical analysis showing significant age-based differ-

ences in visual attention patterns, demonstrating how

AI systems must account for demographic diversity to

create inclusive interfaces that serve diverse needs.

II. RELATED WORK

A. Demographic Representation in Saliency Applications

Recent applications of automatic saliency detection to UI

remain limited. Gupta et al. [3] developed a deep learning

model for saliency prediction on mobile UI elements, col-

lecting gaze data from 111 participants (aged 19–46) without

reporting gender or detailed age distribution. Similarly, Leiva

et al. [4] analyzed gaze data from 30 participants (average age

25.9) on 193 mobile UIs, though specific age distribution was

not provided. Shen et al. [9] and Jiang et al. [12] studied 11

and 62 participants respectively, with Jiang reporting gender
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(23 males, 43 females) but lacking precise age data. These

datasets, though valuable, are small and demographically

narrow, potentially biasing gaze predictions.

This issue extends beyond UI studies. Widely used saliency

datasets (SALICON [6], MSRA [11], MIT1003 [10]) also

rely on small participant groups (< 16) without reporting age

distributions, limiting model generalizability and potentially

compromising safety.

B. Mouse-tracking as a Complement to Eye-tracking

While eye-tracking technology can be considered more so-

phisticated, mouse-tracking provides complementary insights.

Jiang et al. [6] demonstrated that mouse-tracking closely

approximates eye-tracking, achieving an sAUC of 0.86 com-

pared to 0.89 for eye-tracking, outperforming saliency models

(sAUC < 0.8). This highlights mouse-tracking’s potential for

large-scale studies with diverse participants. In this study,

we leverage mouse-tracking to collect large-scale data and

evaluate its applicability in a UI context.

III. SALIENCY RANKING FRAMEWORK

A. Original Saliency Ranking Model

Seychell and Debono [13] introduced SaRa, a framework

that segments images and ranks segment saliency using any

saliency model as a backbone. SaRa divides the input image

into a k × k grid G, generating a saliency map where each

segment s is scored based on entropy (H), center bias (CB),

and optional depth values (DS):

Ss = wH ·Hs + wCB · CBs + wDS ·DSs (1)

where wH , wCB and wDS are the weights assigned to

entropy, center bias and depth, respectively.

B. Proposed Saliency Ranking Model

1) Optimization σ – Saliency Map Generator: We replace

the saliency map generator in the original framework proposed

by Itti et al. [14] with DeepGaze IIE [15]. The MIT/Tuebingen

Saliency Benchmark [16] (Table I) shows that DeepGaze

IIE outperforms Itti’s method and all other benchmarked

techniques across all metrics on the MIT300 dataset [17].

TABLE I
PERFORMANCE COMPARISON OF ITTI’S MODEL AND DEEPGAZE IIE ON

MIT/TUEBINGEN SALIENCY BENCHMARK METRICS. METRICS WITH ↓

INDICATE THAT LOWER VALUES ARE BETTER.

Model IG AUC sAUC NSS CC KLDiv ↓ SIM

Itti et al. N/A 0.54 0.54 0.41 0.13 1.50 0.34
DG IIE 1.07 0.88 0.79 2.53 0.82 0.35 0.70

2) Optimization ϵ – Grid Segment Saliency Score Equation:

To better leverage DeepGaze IIE’s capabilities, we assign

greater weight to the direct pixel values (labeled SSs) in the

generated saliency map. A revised saliency score formula is

proposed. For this study, score component weights are set to

1.

Ss = wH ·Hs + wSS · SSs + wCB · CBs + wDS ·DSs (2)

C. Optimization ν – Saliency Map Normalization

Saliency maps may contain noise in non-salient regions that

can inflate entropy values, particularly with high bit depths. We

include a post-processing step in the pipeline, which applies a

31×31 Gaussian filter, normalizes to [0, 255], and reduces bit

depth from 28 to 25 by dividing values by 8. This approach

minimizes noise and results in 32 discrete saliency levels.

Hyperparameters were optimized on a 482-image subset of

MS-COCO (Figure 1).

Fig. 1. From left to right: Original image, saliency map from DeepGaze IIE,
and map after 31× 31 Gaussian filter and bit depth normalization.

D. Evaluation

Spearman’s rank correlation coefficient (SRCC) measures

the strength of a monotonic relationship between two variables

[18]. It is well-suited for saliency ranking tasks and frequently

used in related work [19]–[21]. Unlike linear correlation,

SRCC detects correlations in relative rank order.

SRCC returns ρ ∈ [−1, 1], where 1 indicates perfect rank

order, -1 indicates complete contrast and ρ is calculated as:

ρ = 1−
6
∑

d2
i

n(n2 − 1)
(3)

where
∑

d2
i

is the sum of squared rank differences, and n

is the sample size.

The Salient Object Ranking (SOR) metric, introduced by

Islam et al. [22], normalizes SRCC to [0, 1] for clearer

interpretation. The optimized SaRa framework will be quanti-

tatively evaluated for saliency ranking on a dataset combining

MS-COCO object masks and SALICON fixation sequences

using SOR, following the approach in [23].

E. Discussion

TABLE II
RESULTS OF THE QUANTITATIVE EXPERIMENT IN [23] COMPARING

STATE-OF-THE-ART SALIENCY MODELS (AVERAGE WEIGHTED BY IMAGES

USED) AND SARA WITH COMBINATIONS OF OPTIMIZATIONS IN ORDER

PERFORMANCE IMPROVEMENT MAGNITUDE.

Model SOR ↑ #Images used ↑

RSDNet 0.728 2418
S4Net 0.891 1507
BASNet 0.707 2402
CPD-R 0.766 2417
SCRN 0.756 2418
Siris et al. 0.792 2365
Average 0.765 2278

Original SaRa [13] 0.654 2347
SaRa + ν 0.670 2347
SaRa + ϵ 0.685 2347
SaRa + σ 0.714 2347
SaRa + ϵσ 0.715 2347
SaRa + ϵσν 0.718 2347
SaRa + ϵσν, k = 30 0.724 2347

Table II demonstrates that each optimization incremen-

tally improved SOR performance. Notably, the Grid Segment



Saliency Score Equation enhanced performance even when

using Itti’s model, while DeepGaze IIE provided the most

substantial boost. A segment grid size of k = 30 balanced per-

formance with computational efficiency (O(k2) complexity).

Applying all optimizations achieved a 10.7% SOR increase

over the original technique, reaching performance comparable

to state-of-the-art models.

IV. METHODOLOGY

Our approach is grounded in human-centered AI principles,

recognizing that visual attention modeling must account for

demographic diversity to create inclusive systems [24], [25].

We designed our experiments to capture and quantify demo-

graphic variations in visual attention explicitly [26]. Data and

implementation available on GitHub1.

A. Gaze Dataset

The dataset comprises 10 pairs of news website interfaces,

selected to represent diverse content consumption patterns [27]

while controlling for interface design variables. Seven major

Maltese news outlets (Times of Malta, Lovin’ Malta, Illum,

The Malta Independent, Malta Today, The Shift and TVM)

are included to represent a wide range of UI design. Each pair

consists of a control version containing distracting elements

(such as advertisements) and an experimental version with

these elements removed. Differences between desktop and

mobile versions are also observed. The elements which change

between versions, termed Areas of Interest (AOIs), highlight

the impact of distractions on gaze attention.

The dataset comprises 10 pairs of news website interfaces

in desktop and mobile forms, selected to represent diverse

content consumption patterns [27]. This design choice reflects

the human-centered understanding that interface elements af-

fect different demographic groups uniquely [28], requiring

evaluation frameworks that can account for these variations.

B. Eye-tracking Experiment

This experiment established a baseline for comparing gaze

and mouse-tracking behaviors. Thirty participants were split

into control and experimental groups, viewing interfaces with

either highly salient or neutral elements. Gaze data was

recorded using a GazePoint eye-tracker at 60 Hz, with 9-point

calibration for accuracy.

Participants viewed 10 interfaces for 10 seconds each, in

random order to minimize exposure bias. Followed by a

questionnaire on demographics (age, gender, or “rather not

say”) and awareness of distracting elements. While only 5

participants were female, statistical analysis showed minimal

gender influence on gaze patterns. Ages ranged from 19 to

26, potentially biasing results and emphasizing the need for a

more age-diverse dataset (see Table IV).

1https://github.com/matthewkenely/framework-attention-news

C. Mouse-tracking Experiment

This online experiment engaged 375 participants, offering

insights into demographic influences on attention. Participants

viewed 10 news interfaces, interacting by hovering or clicking

on elements of interest. Mouse movements and clicks/taps

were tracked, generating attention heatmaps.

Fig. 2. Age distribution in the mouse-tracking experiment, binned into 4
groups.

Participants provided their age and gender (or “Rather not

say”) before assignment to control or experimental groups.

Each group viewed a unique shuffled sequence to mitigate

bias. Desktop users hovered over a central dot before each

image for standardization. Mouse data was tracked using

JavaScript’s MouseEvent API and stored in JSON on Firebase

Cloud.

Among participants, 64% were female (131 male, 240 fe-

male, 3 other, 1 rather not say). Mann-Whitney U tests showed

that gender had minimal influence on attention patterns (p >

0.05 across 90% of interfaces).

The age distribution was structured into four balanced

groups, enabling robust Kruskal-Wallis tests to examine age-

attention correlations. This approach captures demographic

variations essential for developing inclusive AI systems.

Table IV reports:

• p-Value (p): Indicates the probability of observing the

test statistic under the null hypothesis (that there is

no significant difference in the click/tap location based

on the demographic variable). A strong likelihood of

statistical significance is assumed at p < 0.05.

• Effect Size (ε2): Measures the variance explained by the

grouping variable, indicating practical significance.

V. EVALUATION

A. Dataset

Fig. 3. Responses to “Which type of element do you feel stood out the most?”
from the control group (blue) and the experimental group (orange).

https://github.com/matthewkenely/framework-attention-news


TABLE III
RESULTS FROM THE EYE-TRACKING EXPERIMENT COMPARED TO RANK SHIFTS DETECTED BY SARA. EACH RESULT CONCERNS THE AOIS IN THE

INTERFACES. BETTER PERFORMANCE, DENOTED IN BOLD, IMPLIES THAT THE INTERFACE WAS LESS DISTRACTING TO PARTICIPANTS. TMI REFERS TO

THE MALTA INDEPENDENT.

Image

Time
Viewed % ↓

Avg.
Fixations ↓

Revisitors% ↓
Avg.

Revisits ↓

Avg. 1st
View ↑

SaRa
Rank ↑

CTRL EXPR CTRL EXPR CTRL EXPR CTRL EXPR CTRL EXPR CTRL EXPR

Custom (DESKTOP) 17.90 14.03 7.73 6.00 93.33 86.67 3.43 2.69 0.57 1.13 1.00 5.00
Custom (MOBILE) 7.60 2.56 3.13 2.00 73.33 13.33 2.27 3.50 2.27 6.40 1.00 2.00
Times of Malta (1) 28.16 32.60 10.60 10.73 86.67 86.67 2.77 1.69 0.37 0.50 1.00 1.00
Lovin’ Malta 30.91 5.62 12.07 2.44 100.00 13.33 4.27 1.25 0.84 1.59 1.00 4.00
Illum 8.04 7.78 4.83 3.64 80.00 80.00 3.08 2.58 1.44 2.18 4.00 6.00
TMI 6.59 5.65 3.04 2.96 16.67 20.00 2.50 2.60 2.65 4.17 6.00 2.00
Malta Today 10.87 5.67 5.28 2.50 43.33 40.00 3.48 2.33 4.61 3.52 2.00 4.00
The Shift 11.28 4.76 5.17 1.75 20.00 0.00 3.20 0.00 5.24 8.89 3.00 4.00
Times of Malta (2) 10.89 13.13 5.05 5.01 33.33 16.67 3.14 2.33 4.73 4.12 2.00 7.00
TVM 12.06 10.66 5.08 4.07 73.33 46.67 2.00 1.71 2.61 3.18 5.00 7.00

Average 14.43 10.25 5.08 4.12 62.00 40.33 3.01 2.07 2.53 3.57 2.60 4.20

We observe an apparent reduction in the distraction factor of

the AOIs in most interfaces shown to the experimental group.

As shown in Table III, GazePoint data reveals that, on average,

AOIs were viewed 4.2% less (0.42s), fixated on 0.96 fewer

times, revisited by 21.7% fewer participants, revisited 0.94

times less, and first viewed 1.03 seconds later.

The eye-tracking questionnaire further supports this, with

Figure 3 showing a significant shift in attention. Participants

in the experimental group focused more on article headings

(relevant content), while attention to images dropped by 0.3%

and to advertisements by 10.3%.

B. Eye-tracking vs Mouse-tracking

Fig. 4. Gaze location results for the interface “The Shift” shown to the
experimental group. Left: average fixation location per second in the eye-
tracking experiment, right: heatmap from the mouse-tracking experiment.

Heatmaps reveal that eye-tracking highlights elements that

sustain attention over time (e.g., 10 seconds), while mouse-

tracking captures what initially stands out on the interface.

In this UI context, eye-tracking participants tended to read

through screen captures, as shown in Figure 4.

Notably, early fixation locations from eye-tracking align

with the top salient regions that are identified by mouse-

tracking, highlighting their complementary roles. Eye-tracking

suits models for sustained attention, while mouse-tracking

better reflects initial visual saliency. Expanding on the work

done by Jiang et al. in Subsection II-B, we suggest that mouse-

TABLE IV
RESULTS OF THE AGE KRUSKAL-WALLIS TEST. NULL HYPOTHESIS

REJECTIONS ARE UNDERLINED. X: HORIZONTAL GAZE MOVEMENT. Y:
VERTICAL GAZE MOVEMENT.

Image Group p (X) ε2 (X) p (Y) ε2 (Y)

Custom (DESKTOP) CTRL 0.416 0.000 0.155 0.013
Custom (MOBILE) CTRL 0.137 0.014 0.038 0.031
Times of Malta 1 CTRL 0.686 0.000 0.710 0.000
Lovin’ Malta CTRL 0.123 0.016 0.209 0.009
Illum CTRL 0.042 0.029 0.792 0.000
TMI CTRL 0.395 0.000 0.317 0.003
Malta Today CTRL 0.549 0.000 0.019 0.039
The Shift CTRL 0.844 0.000 0.684 0.000
Times of Malta 2 CTRL 0.704 0.000 0.953 0.000
TVM CTRL 0.165 0.012 0.510 0.000
Custom (DESKTOP) EXPR 0.480 0.000 0.404 0.000
Custom (MOBILE) EXPR 0.128 0.000 0.762 0.000
Times of Malta 1 EXPR 0.477 0.015 0.206 0.009
Lovin’ Malta EXPR 0.683 0.000 0.350 0.000
Illum EXPR 0.929 0.000 0.015 0.042
TMI EXPR 0.985 0.009 0.213 0.008
Malta Today EXPR 0.151 0.000 0.146 0.014
The Shift EXPR 0.019 0.040 0.532 0.000
Times of Malta 2 EXPR 0.543 0.000 0.356 0.001
TVM EXPR 0.620 0.000 0.619 0.000

tracking should augment, rather than replace, eye-tracking in

UI studies.

C. Demographic Findings

The demographic statistical tests and subsequent qualitative

analyses reveal notable differences in gaze tendencies across

demographic groups.

Gender played a weaker role in influencing gaze patterns.

The only significant result from the Mann-Whitney U Test

occurred with the “The Malta Independent” interface shown

to the control group. A bias toward the first article image was

evident among female respondents, potentially due to their

superior ability to recognize faces [29], [30].

Age, on the other hand, was shown to have a much stronger

influence on where people were likely to look, with the

difference between the gaze tendencies of the age groups being

statistically significant in 5 out of the 20 examined interfaces

(25%). We observed the following through heatmap analyses:

1) Within headings, the specific words which stood out to

participants tended to shift based on their age group, e.g.



Fig. 5. Custom (MOBILE) interface heatmaps. The control group is on the left, and the experimental group is on the right. From left to right for each group:
heatmaps from the eye-tracking experiment, heatmaps from the mouse-tracking experiment, saliency maps generated by DeepGaze IIE and the corresponding
SaRa ranks.

Fig. 6. The Shift interface heatmaps. Within each pair, the control group is on the left and the experimental group is on the right. Top-left: heatmaps from
the eye-tracking experiment; bottom-left: heatmaps from the mouse-tracking experiment; top-right: saliency maps generated by DeepGaze IIE; bottom-right:
the corresponding SaRa ranks.

“Judicial” and “whistleblower” in the 36–50 age group

and “protest” in the 51–70 age group.

2) Participants in the 21–35 age group were more likely to

reject cookies, whereas the 36–70 age group were more

likely to accept them;

3) Older demographics (36–70) were more likely to look

at news article headings rather than the image;

4) Participants tended to look at images featuring people

who are the same age as them;

D. Saliency Ranking Framework

This section discusses the findings from both experiments in

comparison to the predictions of the AI framework. We present

interfaces from two shift types – content and responsiveness –

where discrepancies were found between demographic groups.

The potential effects of the narrow demographic range in the

eye-tracking experiment (mostly male, ages 19–26) are cross-

checked with the demographic findings in Subsection V-C.

1) Custom (Mobile): The results and SaRa ranks for this

interface are shown in Figure 5. This custom interface assessed

content attention shifts by including and removing the primary

cat image as the AOI. The shift was less significant, with

the image still receiving considerable attention. DeepGaze

IIE and the resulting SaRa ranks accurately captured this,

with the ablated AOI receiving a rank difference of only −1,

and the attention shift toward the second header, “A Game-

Changer in Technology”, was also well represented. Demo-

graphic heatmap analyses revealed that younger participants

were more likely to direct attention to the “Accept” button in

the cookies bar. This biased behavior is apparent in the eye-

tracking experiment (ages 19–26).

2) The Shift: The results and SaRa ranks for this interface

are shown in Figure 6. This interface aimed to assess respon-

siveness attention shifts by comparing desktop and mobile

versions, specifically the ablation of the large ad on the

right. In both experiments, attention toward the ad from the

experimental group was negligible, with the focus shifting

to the main image, heading, and content. DeepGaze IIE and

the corresponding SaRa ranks captured this shift well, with

the AOIs receiving a rank shift of −1. However, the top

bar in the control group, which received no attention, was

erroneously assigned rank 2 due to entropy. Demographic

heatmap analyses revealed that younger participants were

likelier to show attention to the article image. Again, this

biased behavior is apparent in the eye-tracking experiment.



VI. DISCUSSION

A. Demographic Findings

Past research has often focused on young adults (21–35),

potentially overlooking key differences in attention patterns

across younger and older demographics. Future studies should

prioritize both participant quantity and diversity. A large

sample size alone does not guarantee representativeness if

it does not account for demographic variations such as age,

gender, and digital literacy.

Training data must reflect user diversity for AI-based UI

evaluation tools to be effective for a broad audience. Models

trained mainly on younger, tech-savvy participants [31] may

exhibit biases, neglecting the preferences and limitations of

older or less tech-savvy users [32]. Participant recruitment

should be methodical, using stratified sampling to ensure

accurate representation of diverse groups based on regional

and national demographic data. Depending on the application,

this may involve narrowing or broadening the participant base.

General-purpose interfaces require diverse representation to

ensure inclusivity.

B. Experiments and the Ranking Framework

The AI framework composed of DeepGaze IIE and SaRa

performed well in capturing attention across control and exper-

imental groups in various interface designs. As per Table III,

it excelled at predicting attention shifts, especially regarding

AOIs. However, DeepGaze IIE struggled with interpreting

semantic meaning in images and capturing saliency for dis-

tracting images, which was expected since it was trained

on traditional photographs rather than user interfaces. This

limitation was mitigated by the entropy component in Equation

(2), which favors large elements.

VII. CONCLUSION

This study proposed a demographically representative

dataset to capture attention shifts in responsive interfaces and

evaluate the SaRa saliency ranking framework.

The experiment revealed that eye-tracking captures sus-

tained attention while mouse-tracking reflects immediate at-

tention—a distinction critical for training saliency models.

Demographic analysis emphasized that age significantly

influences attention patterns, highlighting the necessity of

representative participant pools when developing datasets. A

transparent approach to dataset curation is essential for creat-

ing generalizable AI-based UI evaluation tools that encourage

user-centric design.

Future research can expand on this study by incorporating

a more nuanced understanding of cognitive variations and

treating demographic factors as intersectional characteristics

rather than discrete variables.
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