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Question 1

1.1 Introduction

Data augmentation is a technique used in
machine learning [I] to artificially inflate the
quantity of training data, with the aim of im-
proving the generalisability of learning mod-
els [2]. In the field of computer vision, this is
done by performing a number of geometric or
colour-based transformations on a subset of the
images in the training data set [3]. Data aug-
mentation is of particular importance due to
the large amount of manual annotation required
(this challenge is highlighted with respect to ob-
ject detection in [4]), as well as the need for
computer vision models to detect and extract
abstract features within images.

1.2 Historical Context

1960s: The history of computer vision spans sev-
eral decades. A work from this time pe-
riod is Larry Roberts > “Machine Per-
ception of Three-Dimensional Solids” [5]
wherein he created a computer vision
method to recognise three-dimensional
objects, their orientation, and position,
within two-dimensional images.

1970s: A greater focus on the understanding
of entire scenes within images, achieved
through edge extraction and line labelling
[6] [7].

1980s: The 1980s saw the development of object
contour detection [8] as well as optical
flow (estimation of the motion of objects
in video) [9].

1990s: The emergence of new machine learning
techniques (e.g. SVM [10]) and the adop-
tion of convolutional neural networks as
a foundation for more sophisticated com-
puter vision models. Significant progress
was made in face recognition algorithms

[11] and video surveillance [12].

2000s: Characterised by large image datasets

such as ImageNet [I3] and the develop-
ment of convolutional neural network ar-
chitectures such as AlexNet [14], VGG-
19 [15] and ResNet [I6]. These architec-
tures have been shown to be applicable
to a wide range of computer vision tasks
with great accuracy [I7] [I8] [19].

1.3 Data Augmentation
Techniques
Flipping

The image is mirrored horizontally or ver-
tically [20] — useful in situations where images
are mirrored in the real world (e.g. mirrors).

Rotation

The image is rotated around its centre by a
degree in the range [0,360] [20] [2I] — useful in
situations where objects are viewed from differ-
ent angles.

Scaling

The image is resized by a factor s > 0 [20]
[21] — helps in making models invariant to res-
olution changes, viewing objects from differ-
ent distances and capturing features at multiple
scales.

Cropping

A subset (usually square) of the image is
kept [20] — useful when convolutional neural
networks require images to have specific dimen-
sions [22].



Colour Jittering

The colours of the image are changed us-
ing either a random [23] or set [24] combination
and permutation of hue, saturation, and bright-
ness adjustments — useful in situations where
images are taken under different lighting condi-
tions and to accommodate for variance in cam-
era settings such as white balance.

1.4 Recent Advancements

Cutout

Random or specific parts of the image are
intentionally occluded (set to black) — this im-
itates real world situations where objects are
partially observable and helps models to learn
to extract more context from different areas in
the image [25].

Mixup

New images are generated by linearly inter-
polating (blending) the pixel values of prior two
images — this helps to generalise the model as
it is trained to behave linearly (smoothing out
of decision boundaries) in the “gaps” in infor-
mation between training images [26].

AutoAugment

This technique approximates the best data
augmentation policies for a given dataset and
task using a machine learning procedure. E. D.
Cubuk et al. [27] used reinforcement learning to
obtain effective combinations of data augmen-
tation techniques very efficiently as the need for
manual tuning was eliminated.

1.5 Application in Com-

puter Vision

Data augmentation has always been a sig-
nificant asset in the diversification and general-
isation of training data sets (particularly when
training CNNs). One of the earliest examples
of this is the LeNet-5 architecture developed by
Y. LeCun et al. [28] in 1998 which artificially
distorted training images, and showed this tech-
nique to reduce test error rate when carrying
out handwritten digit recognition. The follow-
ing are examples of recent state-of-the-art com-
puter vision models which have used and intro-
duced data augmentation techniques:

YOLOv4

A. Bochkovskiy et al. [29] coined the term
“bag of freebies” to describe methods which
improve the performance of a model without
significant training and resource overhead. In
the case of YOLOv4, whose task is object de-
tection, the bag of freebies consisted of data
augmentation techniques, specifically, CutOut,
MixUp and CutMix (a combination of CutOut
and MixUp) with the authors introducing two
new techniques: Mosaic (like CutMix but with
4 prior images) and Self-Adversarial Training
(the neural network intentionally sabotages im-
ages in one stage and is trained on the sabo-
taged image in the second stage).

AlexNet

A. Krizhevsky et al. [14] employed two
forms of data augmentation when training
AlexNet: image translation and horizontal re-
flection, and multiplication of the image RGB
values proportional to the corresponding eigen-
values found using Principal Component Anal-
ysis, multiplied by a random number generated
using a gaussian distribution.
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